Skip to main content

A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development

Abstract

Background

Co-culture of embryos with various somatic cells has been suggested as a promising approach to improve embryo development. Despite numerous reports regarding the beneficial effects of epithelial cells from the female genital tract on embryo development in a co-culture system, little is known about the effect of these cells when being cultured under a polarized condition on embryo growth. Our study evaluated the effects of in vitro polarized cells on pre-embryo development.

Methods

Human endometrial tissue was obtained from uterine specimens excised at total hysterectomy performed for benign indications. Epithelial cells were promptly isolated and cultured either on extra-cellular matrix gel (ECM-Gel) coated millipore filter inserts (polarized) or plastic surfaces (non-polarized). The epithelial nature of the cells cultured on plastic was confirmed through immunohistochemistry, and polarization of cells cultured on ECM-Gel was evaluated by transmission electron microscopy (TEM). One or two-cell stage embryos of a superovulated NMRI mouse were then flushed and placed in culture with either polarized or non-polarized cells and medium alone. Development rates were determined for all embryos daily and statistically compared. At the end of the cultivation period, trophectoderm (TE) and inner cell mass (ICM) of expanded blastocysts from each group were examined microscopically.

Results

Endometrial epithelial cells cultured on ECM-Gel had a highly polarized columnar shape as opposed to the flattened shape of the cells cultured on a plastic surface. The two-cell embryos cultured on a polarized monolayer had a higher developmental rate than those from the non-polarized cells. There was no statistically significant difference; still, the blastocysts from the polarized monolayer, in comparison with the non-polarized group, had a significantly higher mean cell number. The development of one-cell embryos in the polarized and non-polarized groups showed no statistically significant difference.

Conclusion

Polarized cells could improve in vitro embryo development from the two-cell stage more in terms of quality (increasing blastocyst cellularity) than in terms of developmental rate.

References

  1. Quinn p, Kerin JF, Warnes GM: Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985, 44: 493-498.

    Article  CAS  PubMed  Google Scholar 

  2. Tervit HR, Whittingham DG, Rowson LEA: Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972, 30: 493-497.

    Article  CAS  PubMed  Google Scholar 

  3. Neider GL, Macon GR: Uterine and oviductal protein secretion during early pregnancy in the mouse. J Reprod Fert. 1987, 81: 287-294.

    Article  Google Scholar 

  4. Leese HJ: The formation and function of oviduct fluid. J Reprod Fert. 1988, 82: 283-856.

    Article  Google Scholar 

  5. Bowman P, McLaven A: Cleavage rate of mouse embryos in vivo and in vitro. J Embryol Exp Morphol. 1970, 24: 203-207.

    CAS  PubMed  Google Scholar 

  6. Harlow GM, Quinn P: Development of preimplantation mouse embryo in vivo and in vitro. Aust J Biol Sci. 1982, 35: 187-193.

    Article  CAS  PubMed  Google Scholar 

  7. Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD: Differential growth of the mouse premplantation embryo in chemically defined media. Biol Reprod. 1994, 50: 1027-1033.

    Article  CAS  PubMed  Google Scholar 

  8. Jung T, Fisher B: Correlation between diameter and DNA or protein synthetic activity in rabbit blastocyst. Biol Reprod. 1988, 39: 1111-1116.

    Article  CAS  PubMed  Google Scholar 

  9. Carney EW, Foote RH: Effects of super ovulation, embryo recovery, culture system and embryo transfer on development of rabbit embryos in vivo and in vitro. J Reprod Ferrtil. 1990, 89: 543-551. 10.1530/jrf.0.0890543.

    Article  CAS  Google Scholar 

  10. Fitzgerald L, Di Mattina M: Improved medium for long-term culture of human embryos overcomes the in vitro developmental block and increase blastocyst formation. Fertil steril. 1992, 57: 641-647.

    Article  CAS  PubMed  Google Scholar 

  11. Barmat LI, Worrilow KC, Payton BV: Growth factor expression by human oviduct and buffalo rat liver co-culture cells. Fertil Steril. 1997, 67: 775-779. 10.1016/S0015-0282(97)81382-9.

    Article  CAS  PubMed  Google Scholar 

  12. Frasor J, Sherbahn R, Soltes B, Molo MW, Binor Z, Radwanska E, Rawlins R: Animal experimentation: optimizing tubal epithelial cell growth promotes mouse embryo hatching in co- culture. J Assit Reprod Genet. 1996, 5: 423-430.

    Article  Google Scholar 

  13. Hoshi K, Kanno Y, Katayose H, Yanagida K, Suzuki R, Sato A: Coculture of mouse embryo with cryopreserved human oviduct epithelial cells. J Assist Reprod Genet. 1994, 11: 367-372.

    Article  CAS  PubMed  Google Scholar 

  14. Gandolfi F, Moor RM: Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J Reprod Fert. 1987, 81: 23-28.

    Article  CAS  Google Scholar 

  15. Sakkas D, Trounson AO, Kola I: In vivo cleavage rates and viability obtained for early cleavage mouse embryo in co-culture with oviduct cells. Roprod Fertil Dev. 1989, 1: 127-136.

    Article  CAS  Google Scholar 

  16. Lavranos TC, Seamark RF: Addition of steroid to embryo-uterine monolayer co-culture enhances embryo survival and implantation in vitro. Reprod Fertil Dev. 1989, 1: 41-46.

    Article  CAS  PubMed  Google Scholar 

  17. Thibodeaux J, Godke R: In vitro enhancement of early stage embryos with co-culture. Arch Pathol Lab Med. 1992, 116: 364-372.

    CAS  PubMed  Google Scholar 

  18. Fukui Y, McGowan LT, James RW, Pugh PA, Tervit HR: Factors affecting the in vitro development of blastocysts of bovine oocytes matured and fertilized in vitro. J Reprod Fertil. 1991, 92: 125-131.

    Article  CAS  PubMed  Google Scholar 

  19. Bongso A, Soon-Chye NG, Chui-Yee Fong, Shan Ratnam: Co-cultures: a new lead in embryo quality improvement for assisted reproduction. Fertil Steril. 1991, 56: 179-191.

    Article  CAS  PubMed  Google Scholar 

  20. Glasser SR, Julian J, Decker GL, Tang JP, Carsen DD: Development of morphological and functional polarity in primary cultures of immature rat uterine epithelial cells. J Cell Biol. 1988, 107: 2409-2423. 10.1083/jcb.107.6.2409.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobs AL, Decker GL, Glasser SR, Julian J, Carsen DD: Vectorial secretion of prostaglandins by polarized rodent uterine epithelial cells. Endocrinology. 1990, 126: 2125-2136.

    Article  CAS  PubMed  Google Scholar 

  22. Schatz F, Gordon RE, Lanfer N, Gurpide E: Culture of human endometiral cells under polarizing conditions. Differentiation. 1990, 42: 184-190.

    Article  CAS  PubMed  Google Scholar 

  23. Mani SK, Decker GL, Glasser SR: Hormonal Responsiveness by immature rabbit uterine epithelial cells polarized in vitro. Endocrinology. 1991, 128: 1563-1573.

    Article  CAS  PubMed  Google Scholar 

  24. Ailenberg M, Fritz IB: Control of levels of plasminogen activator activity secreted by sertoli cells maintained in a two-chamber assembly. Endocrinol. 1988, 122: 2613-2618.

    Article  CAS  Google Scholar 

  25. Carson DD, Tang J-P, Julian J, Glasser SR: Vectorial secretion of proteoglycans by polarized rat uterine epithelial cells. J Cell Biol. 1988, 197: 2425-2434. 10.1083/jcb.107.6.2425.

    Article  Google Scholar 

  26. Chembard M, Verrier B, Gabrion J, Mauchamp J: Polarization of thyroid cells in culture: evidence for basolateral localization of the iodide "pump" and at the thyroid stimulating hormone receptor- adenly cyclase complex. J Cell Biol. 1983, 96: 1172-1177. 10.1083/jcb.96.4.1172.

    Article  Google Scholar 

  27. Hardley MA, Byers SW, Snarez-Quarez-Quian CA, Kleinman HA, Dym M: Extracellular matrix regulates sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol. 1985, 101: 1511-1522. 10.1083/jcb.101.4.1511.

    Article  Google Scholar 

  28. Pollard JW, Plante C, King WT, Hansen PJ, Betteridge KJ, Suarez SS: Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol Reprod. 1991, 44: 102-107.

    Article  CAS  PubMed  Google Scholar 

  29. Sidhu KS, Mate KE, Rodger JC: Sperm – oviduct epithelial cell monolayer co-culture: an in vitro model of sperm female tract interactions in a marsupial, the tamer wallaby (macropus engenii). J Reprod Fertil. 1988, 114: 55-61.

    Article  Google Scholar 

  30. Ellington JE, Jones AE, Davitt CM, Schneider CS, Brishois RS, Hiss GA, Wright RW: Human sperm function in co-culture with human, macaque or bovine oviduct epithelial cells monolayers. Hum Reprod. 1998, 13: 2797-2804.

    Article  CAS  PubMed  Google Scholar 

  31. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO: Simplified technique for differential staining of inner cell mass and trophoectoderm cells of mouse and bovine blastocysts. Reprod Biomed Online. 2001, 3: 25-29.

    Article  PubMed  Google Scholar 

  32. Bentin-Ley U, Horn T, Sjogren A, Sorensen S, Falck Larsen J, Hamberger L: Ultra structure of human blastocyst – endometrial interactions in vitro. J Reprod Fertil. 2000, 120: 337-350. 10.1530/reprod/120.2.337.

    Article  CAS  PubMed  Google Scholar 

  33. Bentin-Ley U, Sjogren , Nilsson L, Hamberger L, Larsen JF, Horn T: Presence of uterine pinopodes at the embryo – endometrial interface during human implantation. In vitro hum Reprod. 1999, 14: 515-520. 10.1093/humrep/14.2.515.

    Article  CAS  PubMed  Google Scholar 

  34. Arnold JT, Kaufman DG, Seppala M, Lessey BA: Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum Reprod. 2001, 16: 836-845. 10.1093/humrep/16.5.836.

    Article  CAS  PubMed  Google Scholar 

  35. Park DW, Choi DS, Ryu HS, Know HC, Joo H, Min CK: A well – defined in vitro three dimensional culture of human endometrium and its applicability to endometrial cancer invasion. Cancer Lett. 2003, 195: 185-192.

    Article  CAS  PubMed  Google Scholar 

  36. Classen-Linke I, Kusche M, Knauthe R, Beier HM: Establishment of a human endometrial cell culture system and characterization of its polarized hormone responsive epithelial cells. Cell Tissue Res. 1997, 287: 171-185. 10.1007/s004410050743.

    Article  CAS  PubMed  Google Scholar 

  37. Pollard JW, Xu KP, Porie R, King WA, Betteridge KJ: Influence of various oviductal epithelial cell culture systems on the development of early cleavage stage bovine embryos in vitro. Theriogenology. 1989, 31: 239-10.1016/0093-691X(89)90647-X.

    Article  Google Scholar 

  38. Ouhibi N, Hamidi J, Guillad J, Menezo Y: Co-culture of one cell mouse embryo on different cell support. Hum Reprod. 1990, 5: 737-743.

    Article  CAS  PubMed  Google Scholar 

  39. Bentin-Ley U, Pederson B, Linderberg S, Larsen JB, Hamberger L, Horn T: Isolation and culture of human endometrial cells in a three – dimensional culture system. J Reprod Fertil. 1994, 101: 327-332.

    Article  CAS  PubMed  Google Scholar 

  40. Vega Salas DE, salas PJ, Gunderson D, Rodriguez-Boulan E: Formation of the apical pole of epithelial (madin – Darby Canine Kidney) cells : Polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell – cell interactions. J Cell Biol. 1987, 104: 905-916. 10.1083/jcb.104.4.905.

    Article  CAS  PubMed  Google Scholar 

  41. Freeman MR, Bastias MC, Hill GA, Osteen KG: Co- culture of mouse embryos with cells isolated from the human ovarian follicle, oviduct and uterine endometrium. Fertil Steril. 1993, 59: 138-142.

    Article  CAS  PubMed  Google Scholar 

  42. Boatman DE: In vitro growth of non-human primate pre- and peri-implantation embryos:Mammalian Preimplantation Embryo. Edited by: Bavister BD. 1987, New York: Plenum Press, 273-308.

    Google Scholar 

  43. Schiewe MC, Hazeleger NI, Sclimenti C, Balmaceda JP: Physiological characterization of blastocyst hatching mechanisms by use of a mouse antihatching model. Fertil Steril. 1995, 63: 288-294.

    Article  CAS  PubMed  Google Scholar 

  44. Handyside AH, Hunter S: Cell division and death in the mouse blastocyst before implantation. Roux's Arech Dev Biol. 1986, 195: 519-526. 10.1007/BF00375893.

    Article  Google Scholar 

  45. Hardy k, Handyside AH, Winston RM: The human blastocyst:cell number, death and allocation during late preimplantation development in vitro. Development. 1989, 107: 597-604.

    CAS  PubMed  Google Scholar 

  46. Sherban R, Frasor J, Radwanska E, Binor Z, Wood-molo M, Hibner M, Mack S, Rawlines RG: Comparison of mouse embryo development in open and micro drop Co- Culture systems. Hum Reprod. 1996, 11: 2223-2229.

    Article  Google Scholar 

  47. Thomas PG, Ignotz GG, Ball BA, Miller PG, Brinsko SP, Currie B: Isolation, Culture and characterization of equine oviduct epithelial cells in vitro. Mol Reprod Dev. 1995, 41: 468-478. 10.1002/mrd.1080410409.

    Article  CAS  PubMed  Google Scholar 

  48. Woldesenbet S, Newton GR: Comparison of proteins synthesized by polarized caprine oviductal epithelial cells and oviductal explants in vitro. Theriogenology. 2003, 60: 533-543. 10.1016/S0093-691X(03)00036-0.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Royan Institute. We thank the staff of the Department of Electron Microscopy of the Sahid Beheshty University for ultrastructural evaluation, and the clinicians in the Department of Obstetrics and Gynaecology of the Arash and Tehran Hospital for supplying endometrial samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Rezazadeh Valojerdi.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Baghaban Eslami Nejad, M.R., Rezazadeh Valojerdi, M. & Kazemi Ashtiani, S. A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development . J Exp Clin Assist Reprod 2, 7 (2005). https://doi.org/10.1186/1743-1050-2-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1743-1050-2-7