Skip to main content

Localization and gene expression of steroid sulfatase by RT-PCR in cumulus cells and relationship to serum FSH levels observed during in vitro fertilization

Abstract

Background

The purpose of this study was to localize the expression of steroid sulfatase (STS) in cumulus cells and to determine the relationship between STS mRNA expression and the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and progesterone.

Methods

The subject group included 49 women (29 to 44 years old) for whom in vitro fertilization treatment was indicated. All subjects gave informed consent. One hundred fourteen samples of cumulus-oocyte complex (COC) were obtained under microscopic observation. Part of the COC was stained by STS antibody. RNA was extracted by phenol-chloroform method and real-time PCR was performed. Serum of each patient was collected and was measured by ELISA.

Results

Some of the cumulus samples were stained by STS antibody. The expression of STS mRNA in all samples was confirmed by quantitative RT-PCR. Although there was no significant correlation between the level of STS mRNA and the serum levels of estradiol, progesterone and LH, there was a statistically significant negative correlation between the level of STS mRNA expression and the serum level of FSH (n = 105, p = 0.018, r = -0.22).

Conclusion

These results have demonstrated for the first time the expression of STS in cumulus cells by immunohistological stainings and real-time RT-PCR. STS expression in cumulus cells may be related to the control of the local steroidal environment in the oocyte. Serum FSH may control STS mRNA expression from the results of RT-PCR, although the correlation was low.

References

  1. 1.

    Armstrong DT, Xia P, de Gannes G, Tekpetey FR, Khamsi F: Differential effects of insulin-like growth factor-I and follicle-stimulating hormone on proliferation and differentiation of bovine cumulus cells and granulosa cells. Biol Reprod. 1996, 54: 331-338.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. 2.

    Eppig JJ, Wigglesworth K, Pendola F, Hirao Y: Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod. 1997, 56: 976-984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. 3.

    Li R, Norman RJ, Armstrong DT, Gilchrist RB: Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000, 63: 839-845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. 4.

    Gilchrist RB, Ritter LJ, Armstrong DT: Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004, 82-83: 431-446. 10.1016/j.anireprosci.2004.05.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ: Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001, 121: 647-653. 10.1530/rep.0.1210647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Simon AM, Goodenough DA, Li E, Paul DL: Female infertility in mice lacking connexin 37. Nature. 1997, 385: 525-529. 10.1038/385525a0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Shimada M, Maeda T, Terada T: Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol Reprod. 2001, 64: 1255-1263.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. 8.

    Kidder GM, Mhawi AA: Gap junctions and ovarian folliculogenesis. Reproduction. 2002, 123: 613-620. 10.1530/rep.0.1230613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Schoenfelder M, Schams D, Einspanier R: Steroidogenesis during in vitro maturation of bovine cumulus oocyte complexes and possible effects of tri-butyltin on granulosa cells. J Steroid Biochem Mol Biol. 2003, 84: 291-300. 10.1016/S0960-0760(03)00042-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Vanderhyden BC, Cohen JN, Morley P: Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology. 1993, 133: 423-426. 10.1210/en.133.1.423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Yanaihara A, Yanaihara T, Toma Y, Shimizu Y, Saito H, Okai T, Higashiyama T, Osawa Y: Localization and expression of steroid sulfatase in human fallopian tubes. Steroids. 2001, 66: 87-91. 10.1016/S0039-128X(00)00204-X.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T: Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi. 2003, 123: 369-375. 10.1248/yakushi.123.369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    De Sutter P, Dhont M, Vanluchene E, Vandekerckhove D: Correlations between follicular fluid steroid analysis and maturity and cytogenetic analysis of human oocytes that remained unfertilized after in vitro fertilization. Fertil Steril. 1991, 55: 958-963.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. 14.

    Botero-Ruiz W, Laufer N, DeCherney AH, Polan ML, Haseltine FP, Behrman HR: The relationship between follicular fluid steroid concentration and successful fertilization of human oocytes in vitro. Fertil Steril. 1984, 41: 820-826.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Franchimont P, Hazee-Hagelstein MT, Hazout A, Frydman R, Schatz B, Demerle F: Correlation between follicular fluid content and the results of in vitro fertilization and embryo transfer. I. Sex steroids. Fertil Steril. 1989, 52: 1006-1011.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Hasegawa J, Iwasaki S, Yanaihara A, Negishi M, Tahara R, Okai T: Correlation between steroids concentaration in follicular fluid, pronuclear morphology and embryo qualities in in vitro fertilization. Reproductive Medicine and Biology. 2003, 2: 171-176. 10.1111/j.1447-0578.2003.00043.x.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Clemens JW, Kabler HL, Sarap JL, Beyer AR, Li PK, Selcer KW: Steroid sulfatase activity in the rat ovary, cultured granulosa cells, and a granulosa cell line. J Steroid Biochem Mol Biol. 2000, 75: 245-252. 10.1016/S0960-0760(00)00171-0.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Haning RVJ, Hackett RJ, Boothroid RI, Canick JA: Steroid sulphatase activity in the human ovarian corpus luteum, stroma, and follicle: comparison to activity in other tissues and the placenta. J Steroid Biochem. 1990, 36: 175-179. 10.1016/0022-4731(90)90127-E.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Kosmath I, Patzner RA, Adam H: [Regression in the ovary of Myxine glutinosa L. (Cyclostomata). IV. Histochemical studies of atretic follicles]. Z Mikrosk Anat Forsch. 1983, 97: 941-947.

    PubMed  CAS  Google Scholar 

  20. 20.

    Mestwerdt W, Muller O, Brandau H: [Light and electronmicroscopic examinations on granulosa and theca of preovulatory and freshly ruptured follicles of human ovaries (author's transl)]. Arch Gynakol. 1977, 222: 115-136. 10.1007/BF00667196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Bonser J, Walker J, Purohit A, Reed MJ, Potter BV, Willis DS, Franks S, Mason HD: Human granulosa cells are a site of sulphatase activity and are able to utilize dehydroepiandrosterone sulphate as a precursor for oestradiol production. J Endocrinol. 2000, 167: 465-471. 10.1677/joe.0.1670465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Schipper I, Fauser BC, van Gaver EB, Zarutskie PW, Dahl KD: Development of a human granulosa cell culture model with follicle stimulating hormone responsiveness. Hum Reprod. 1993, 8: 1380-1386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. 23.

    Matsuoka R, Yanaihara A, Saito H, Furusawa Y, Toma Y, Shimizu Y, Yanaihara T, Okai T: Regulation of estrogen activity in human endometrium: effect of IL-1beta on steroid sulfatase activity in human endometrial stromal cells. Steroids. 2002, 67: 655-659. 10.1016/S0039-128X(02)00016-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Donesky BW, Dias de Moura M, Tedeschi C, Hurwitz A, Adashi EY, Payne DW: Interleukin-1beta inhibits steroidogenic bioactivity in cultured rat ovarian granulosa cells by stimulation of progesterone degradation and inhibition of estrogen formation. Biol Reprod. 1998, 58: 1108-1116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. 25.

    Corwin EJ, Cannon JG: Gonadotropin modulation of interleukin-1 secretion. J Gend Specif Med. 1999, 2: 30-34.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Miss. Momoko Negishi for her technical assistance. We are grateful to TOSOH Corporation and EIKEN CHEMICAL CO., LTD. for providing us with AIA-600II and enzyme immunoassay Kit. This study was supported by Health and Labour Sciences Research Grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Atsushi Yanaihara.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Otsuka, Y., Yanaihara, A., Iwasaki, S. et al. Localization and gene expression of steroid sulfatase by RT-PCR in cumulus cells and relationship to serum FSH levels observed during in vitro fertilization . J Exp Clin Assist Reprod 2, 6 (2005). https://doi.org/10.1186/1743-1050-2-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1743-1050-2-6