- Research
- Open Access
- Published:
Localization and gene expression of steroid sulfatase by RT-PCR in cumulus cells and relationship to serum FSH levels observed during in vitro fertilization
Journal of Experimental & Clinical Assisted Reproduction volume 2, Article number: 6 (2005)
Abstract
Background
The purpose of this study was to localize the expression of steroid sulfatase (STS) in cumulus cells and to determine the relationship between STS mRNA expression and the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and progesterone.
Methods
The subject group included 49 women (29 to 44 years old) for whom in vitro fertilization treatment was indicated. All subjects gave informed consent. One hundred fourteen samples of cumulus-oocyte complex (COC) were obtained under microscopic observation. Part of the COC was stained by STS antibody. RNA was extracted by phenol-chloroform method and real-time PCR was performed. Serum of each patient was collected and was measured by ELISA.
Results
Some of the cumulus samples were stained by STS antibody. The expression of STS mRNA in all samples was confirmed by quantitative RT-PCR. Although there was no significant correlation between the level of STS mRNA and the serum levels of estradiol, progesterone and LH, there was a statistically significant negative correlation between the level of STS mRNA expression and the serum level of FSH (n = 105, p = 0.018, r = -0.22).
Conclusion
These results have demonstrated for the first time the expression of STS in cumulus cells by immunohistological stainings and real-time RT-PCR. STS expression in cumulus cells may be related to the control of the local steroidal environment in the oocyte. Serum FSH may control STS mRNA expression from the results of RT-PCR, although the correlation was low.
References
Armstrong DT, Xia P, de Gannes G, Tekpetey FR, Khamsi F: Differential effects of insulin-like growth factor-I and follicle-stimulating hormone on proliferation and differentiation of bovine cumulus cells and granulosa cells. Biol Reprod. 1996, 54: 331-338.
Eppig JJ, Wigglesworth K, Pendola F, Hirao Y: Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod. 1997, 56: 976-984.
Li R, Norman RJ, Armstrong DT, Gilchrist RB: Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000, 63: 839-845.
Gilchrist RB, Ritter LJ, Armstrong DT: Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004, 82-83: 431-446. 10.1016/j.anireprosci.2004.05.017.
Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ: Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001, 121: 647-653. 10.1530/rep.0.1210647.
Simon AM, Goodenough DA, Li E, Paul DL: Female infertility in mice lacking connexin 37. Nature. 1997, 385: 525-529. 10.1038/385525a0.
Shimada M, Maeda T, Terada T: Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes. Biol Reprod. 2001, 64: 1255-1263.
Kidder GM, Mhawi AA: Gap junctions and ovarian folliculogenesis. Reproduction. 2002, 123: 613-620. 10.1530/rep.0.1230613.
Schoenfelder M, Schams D, Einspanier R: Steroidogenesis during in vitro maturation of bovine cumulus oocyte complexes and possible effects of tri-butyltin on granulosa cells. J Steroid Biochem Mol Biol. 2003, 84: 291-300. 10.1016/S0960-0760(03)00042-6.
Vanderhyden BC, Cohen JN, Morley P: Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology. 1993, 133: 423-426. 10.1210/en.133.1.423.
Yanaihara A, Yanaihara T, Toma Y, Shimizu Y, Saito H, Okai T, Higashiyama T, Osawa Y: Localization and expression of steroid sulfatase in human fallopian tubes. Steroids. 2001, 66: 87-91. 10.1016/S0039-128X(00)00204-X.
Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T: Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi. 2003, 123: 369-375. 10.1248/yakushi.123.369.
De Sutter P, Dhont M, Vanluchene E, Vandekerckhove D: Correlations between follicular fluid steroid analysis and maturity and cytogenetic analysis of human oocytes that remained unfertilized after in vitro fertilization. Fertil Steril. 1991, 55: 958-963.
Botero-Ruiz W, Laufer N, DeCherney AH, Polan ML, Haseltine FP, Behrman HR: The relationship between follicular fluid steroid concentration and successful fertilization of human oocytes in vitro. Fertil Steril. 1984, 41: 820-826.
Franchimont P, Hazee-Hagelstein MT, Hazout A, Frydman R, Schatz B, Demerle F: Correlation between follicular fluid content and the results of in vitro fertilization and embryo transfer. I. Sex steroids. Fertil Steril. 1989, 52: 1006-1011.
Hasegawa J, Iwasaki S, Yanaihara A, Negishi M, Tahara R, Okai T: Correlation between steroids concentaration in follicular fluid, pronuclear morphology and embryo qualities in in vitro fertilization. Reproductive Medicine and Biology. 2003, 2: 171-176. 10.1111/j.1447-0578.2003.00043.x.
Clemens JW, Kabler HL, Sarap JL, Beyer AR, Li PK, Selcer KW: Steroid sulfatase activity in the rat ovary, cultured granulosa cells, and a granulosa cell line. J Steroid Biochem Mol Biol. 2000, 75: 245-252. 10.1016/S0960-0760(00)00171-0.
Haning RVJ, Hackett RJ, Boothroid RI, Canick JA: Steroid sulphatase activity in the human ovarian corpus luteum, stroma, and follicle: comparison to activity in other tissues and the placenta. J Steroid Biochem. 1990, 36: 175-179. 10.1016/0022-4731(90)90127-E.
Kosmath I, Patzner RA, Adam H: [Regression in the ovary of Myxine glutinosa L. (Cyclostomata). IV. Histochemical studies of atretic follicles]. Z Mikrosk Anat Forsch. 1983, 97: 941-947.
Mestwerdt W, Muller O, Brandau H: [Light and electronmicroscopic examinations on granulosa and theca of preovulatory and freshly ruptured follicles of human ovaries (author's transl)]. Arch Gynakol. 1977, 222: 115-136. 10.1007/BF00667196.
Bonser J, Walker J, Purohit A, Reed MJ, Potter BV, Willis DS, Franks S, Mason HD: Human granulosa cells are a site of sulphatase activity and are able to utilize dehydroepiandrosterone sulphate as a precursor for oestradiol production. J Endocrinol. 2000, 167: 465-471. 10.1677/joe.0.1670465.
Schipper I, Fauser BC, van Gaver EB, Zarutskie PW, Dahl KD: Development of a human granulosa cell culture model with follicle stimulating hormone responsiveness. Hum Reprod. 1993, 8: 1380-1386.
Matsuoka R, Yanaihara A, Saito H, Furusawa Y, Toma Y, Shimizu Y, Yanaihara T, Okai T: Regulation of estrogen activity in human endometrium: effect of IL-1beta on steroid sulfatase activity in human endometrial stromal cells. Steroids. 2002, 67: 655-659. 10.1016/S0039-128X(02)00016-8.
Donesky BW, Dias de Moura M, Tedeschi C, Hurwitz A, Adashi EY, Payne DW: Interleukin-1beta inhibits steroidogenic bioactivity in cultured rat ovarian granulosa cells by stimulation of progesterone degradation and inhibition of estrogen formation. Biol Reprod. 1998, 58: 1108-1116.
Corwin EJ, Cannon JG: Gonadotropin modulation of interleukin-1 secretion. J Gend Specif Med. 1999, 2: 30-34.
Acknowledgements
We wish to thank Miss. Momoko Negishi for her technical assistance. We are grateful to TOSOH Corporation and EIKEN CHEMICAL CO., LTD. for providing us with AIA-600II and enzyme immunoassay Kit. This study was supported by Health and Labour Sciences Research Grants.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Otsuka, Y., Yanaihara, A., Iwasaki, S. et al. Localization and gene expression of steroid sulfatase by RT-PCR in cumulus cells and relationship to serum FSH levels observed during in vitro fertilization . J Exp Clin Assist Reprod 2, 6 (2005). https://doi.org/10.1186/1743-1050-2-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1743-1050-2-6